BROWSER EXTENSION AND LOGIN-LEAK EXPERIMENT

IPEN 2017, Vienna
Joint work with Nataliia Bielova, Claude Castelluccia

Gábor György Gulyás
Privatics Team, INRIA
http://gulyas.info // @GulyasGG
User Tracking on the Web
The „de-facto” business model of the web

User

Advertiser

ID=967

ID=967

cnn.com

Apples on sale!
Storing the identifier on the client side

- Cookies
 - Flash
 - HTML5
- Caching in files of
 - JavaScript
 - CSS
 - Images (pixel-level)
- E-tags
- Last-mod timestamps
- HTTP authentication
- HTTP 301 redirect
- HSTS caches

…
Browser fingerprinting appears (2010-2012) [3]

- Browser fingerprint
 - Flash/Java required (for 95% uniqueness)
 - Browser dependent

- Cross-browser finge.
 - Device fingerprint
 - No plugins, just JS
 - Concept appears later in the wild
Fingerprinting penetration (2013-2016)

2013: Alexa TOP 10k.
- 20 pages deep
- 0.4% adoption (40 sites)
- Skype.com, porn and dating
- 3,804 less popular sites are tracked

2016: Alexa TOP 1M.

<table>
<thead>
<tr>
<th>Rank Interval</th>
<th>% of First-parties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Canvas</td>
</tr>
<tr>
<td>[0,1K)</td>
<td>5.10%</td>
</tr>
<tr>
<td>[1K,10K)</td>
<td>3.91%</td>
</tr>
<tr>
<td>[10K,100K)</td>
<td>2.45%</td>
</tr>
<tr>
<td>[100K,1M)</td>
<td>1.31%</td>
</tr>
</tbody>
</table>

Nickiforakis et al.: Cookieless monster: Exploring the ecosystem of web-based device fingerprinting (2013)

Behavioral fingerprinting

You are what you install to your computer?

Fonts are good indicators of what is installed.

The list of the sites you have visited also describe you well.

Can be used to de-anonymize you as a natural person.

Su et al.: De-anonymizing Web Browsing Data with Social Networks (2017)

Boda et al.: User Tracking on the Web via Cross-Browser Fingerprinting (2011)

Google.com Youtube.com Facebook.com Baidu.com Yahoo.com Wikipedia.org Google.co.in Qq.com Sohu.com Google.co.jp Taobao.com Tmall.com Live.com Amazon.com Vk.com Twitter.com Instagram.com 360.cn
Browser Extension and Login-Leak Experiment

17-06-09
© Gábor György Gulyás
Browser Extension and Login-Leak Experiment

• Extension detection
 – Detecting extension resources

• Detecting web logins
 – Redirection URL hijacking
 – Misusing CSP violation
Why is this a problem?

Extensions can leak private information!

The more privacy extensions you install, the more identifiable you are!
Discovering Browser Extensions via Web Accessible Resources

Alexander Sjösten
Chalmers University of Technology
Gothenburg, Sweden
sjosten@chalmers.se

Steven Van Acker
Chalmers University of Technology
Göteborg, Sweden
steven@chałmers.se

Andrei Sabelfeld
Chalmers University of Technology
Gothenburg, Sweden
sabelfeld@chalmers.se

ABSTRACT

Browser extensions provide a powerful platform to enhance the browsing experience. At the same time, they raise important security questions. From the point of view of a web developer, some browser extensions are invasive, removing intended features and adding unintended ones, e.g., extensions that improve Facebook likes. Conversely, from the point of view of website owners, some websites are invasive, e.g., websites that use ad blockers. Motivated by security goals at clash, this paper explores browser extension discovery, through a non-behavioral technique, based on detecting extensions' web accessible resources. We report on an empirical study of both free Chrome and Firefox extensions, being able to detect over 50% of the top 1,000 free Chrome extensions, including popular security, and privacy-critical extensions such as Adblock, LastPass, Avast Online Security, and Ghostery. We also conduct an empirical study of non-behavioral extension detection on the Alexa top 100,000 websites. We present two dual measures of making extension detection easier in the interests of websites and making extension detection more difficult in the interest of extensions. Finally, we discuss a browser architecture that allows a user to take control of detecting the conflicting security goals.

Non-behavioral extension detector

This web application attempts to detect which browser extensions you have installed.

Similar extension detectors traditionally use an indirect behavioral technique, attempting to detect an extension by observing its behavior. For instance, AdBlock can be detected by injecting a fake advertisement and then detecting whether it was removed from the webpage.

This detector relies on a non-behavioral technique to directly reveal the existence of browser extensions, by querying browser extensions' web accessible resources. For instance, the AdBlock extension in Chrome has a web accessible resource at chrome-extension://ghhmmpqoobfepjocnangkkitbigidom/icons/icon24.png, which this detector probes for. If this web accessible resource is present, the extension is installed.

Extension signatures data was last updated on Dec 6, 2016 2:47:39 PM (3 months ago).

Disclaimer

This webpage will probe for several thousands of web accessible resources in your browser. If you press the "Accept" button to the right, you give us permission to do this.

The results of this scan will not be shared with anyone, we do not store any of the results.

Because web extensions are updated frequently, their set of exposed web accessible resources may change over time. To keep up with these changes, we update this webpage regularly. If your extension is not detected, it may simply be because this webpage has not caught up with the latest version of the extension. Please try again later.

Press the "Accept" button on the right to start the scan.

Scan thoroughness
How does it work?

• Try yourself: http://tinyurl.com/chrome-ghostery

• High precision & coverage:
 – Large fraction of extensions covered ~28%
 – No false-positives (uninstalled extensions not reported)

• Robustness (multiple resources can be checked)
Other browsers?

- **Firefox**
 - Smaller impact: ~7% (direct possibility to manipulate UI)
 - WebExtensions ➔ same vulnerability as Chrome (but ~5.5%)
 - Resources leak more information

- **Opera**

- **Brave**
 - Comes with detectable built-in extensions
 - Test it here: https://extensions.inrialpes.fr/brave/

- **Edge**
 - It is possible http://tinyurl.com/edge-ext
 - Low number of extensions are available
Browser Extension and Login-Leak Experiment

- Extension detection
 - Detecting extension resources
- Detecting web logins
 - Redirection URL hijacking
 - Misusing CSP violation
Why is this a problem?

Allows very **precise profiling**.

Leaks **sensitive info (security!)**.

Tells about **where you work**.

Allow **behavioral tracking**.
Currently detected sites (60)

Social & Fun
- Battle.net
- Facebook
- Flickr
- Foursquare
- Gmail
- Google Plus
- Instagram
- LinkedIn
- Meetup
- Pinterest
- Skype
- Spotify
- Tumblr
- Twitter
- VK
- Youtube

Shopping
- 500px
- Alibaba.com, Aliexpress.com
- Airbnb
- Amazon.{co.uk, com, de, fr, it}
- eBay.{co.uk, com, de, fr, it}
- Expedia
- Paypal
- Photobucket
- Shutterstock
- Steam
- Square

News & Blogging
- Forbes
- Hackernews
- LeMonde.fr
- LiveJournal
- Medium
- Reddit
- Spiegel.de
- Yahoo

Work & Education
- Academia.edu
- BitBucket
- Carbonmade
- Dropbox
- EdX
- Evernote
- Github
- Indeed
- Inria
- Khan Academy
- PluralSight
- Scribd
- Slack
- SugarSync
- Viadeo

Gray zone
- Youporn
- Dating sites
Techniques used

Your Social Media Fingerprint

Without your consent most major web platforms leak whether you are logged in. This allows any website to detect on which platforms you’re signed up. Since there are lots of platforms with specific demographics an attacker could reason about your personality, too.

This project is an open source contribution of RobinLinus - Security, Privacy & Blockchain Consulting.

Demonstration

You are logged in to:

Twitter

Redirection URL hijacking
by @robin_linus

Abusing Content Security Policy
by @homakov

Monday, January 13, 2014

Using Content-Security-Policy for Evil

TL;DR How can we use technique created to protect websites for Evil? (We used XSS Auditor for Evil before) There’s a neat way: taking advantage of CSP we can detect whether URL1 does redirect to URL2 and even bruteforce /path of URL2/path. This is a conceptual vulnerability in CSP design (violation == detection), and there’s no obvious way to fix it.

Demo & playground: http://homakov.github.io/csp.html

based on a slide from Nataliia Bielova
How do they work?

Redirection URL hijacking

https://inria.fr/login?return=CALENDAR
How do they work? [2]

Redirection URL hijacking

https://inria.fr/login?return=logo_INRIA.png

Not logged in
(login page)

Logged in
(silent & unchecked redirection to image)
How do they work? [3]

Abusing CSP

Not allowed redirection!
Raises error, reports it back.

Not logged in
(http://www.ebay.com)

Logged in
(http://my.ebay.com)
Browser Extension and Login-Leak Experiment

When you browse the web, small beacons (trackers) are spying on your online activities. Even though such trackers are invisible, they collect information about you such as which pages you visit, which buttons clicked, and what text you typed. This information is often used to show you targeted advertisements and may require you to pay a higher price during online shopping depending on the collected information.

Did you know websites can track you by your browser extensions and web logins?

Recent studies show that you can be tracked based on your web browser properties. In this experiment, we demonstrate that you can also be tracked by

- your browser extensions (such as AdBlock, Pinterest, or Ghostery), and
- the websites you have logged in (such as Facebook, Gmail, or Twitter).

You can learn more here about how these detection techniques work.

In the experiment, we will collect your browser fingerprint, together with the browser extensions installed and a list of websites you have logged in. We only collect anonymous data during the experiment (see our Privacy Policy), we will securely store the data on an Inria server, use it only for research purpose and not share it with anyone outside of Inria. You can also read the frequently asked questions here.

Test which websites I am logged into. Your browser will silently visit these sites.

NEW! What is your relation to computers? (we would like to see whether our dataset is biased)
- Computer scientist or geek.
- Regular computer user.
- I don’t want to declare.

☑️ I agree, test my browser!
Welcome back!
We already have 16 test(s) from you. Thank you!

Are you identifiable?

Yes, you are identifiable, as there are no other users who looks like you among the 18498 users we tested so far:

Browser extension details

Your browser's extension fingerprint is unique among the 18498 browsers tested so far!

Tested extensions:

- ghostery
- window-resizer
- flashcontrol
- adblock

Detected resource:

- chrome-extension://misomiejd/lkfdlsjflgjcficjorpeanijj/app/images/apps_pages/tracker.png
- chrome-extension://kkielcaaldanhrjdeamm/mjlogefonh/images/loot_19.png
- chrome-extension://mhdmknygrgflkh/pikbelvic/k/mkwise/assets/flashlogo.png
- chrome-extension://pghhmmpioik/fepprarna/ajkblobdom/adblock-jquery-ui.custom.css

Website login details (login-leak)

Your browser’s website login presence fingerprint is not unique! We found 8 collision(s) among the 18498 browsers tested so far.

Social media where you seem to be logged into:

<table>
<thead>
<tr>
<th>Website</th>
<th>Detection method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Youtube</td>
<td>Redirection URL hijacking</td>
</tr>
<tr>
<td>Gmail</td>
<td>Redirection URL hijacking</td>
</tr>
<tr>
<td>Twitter</td>
<td>Redirection URL hijacking</td>
</tr>
<tr>
<td>Facebook</td>
<td>Redirection URL hijacking</td>
</tr>
<tr>
<td>Blogger</td>
<td>Redirection URL hijacking</td>
</tr>
<tr>
<td>LinkedIn</td>
<td>Content-Security-Policy violation</td>
</tr>
<tr>
<td>eBay.com</td>
<td>Content-Security-Policy violation</td>
</tr>
</tbody>
</table>
What could we do (for now)?

Extension detection
- Chrome, Opera, Brave: not much.
- Safari: not evaluated.
- Firefox: vulnerable.
 But: few extensions, and good for privacy.

Web login detection
- Best advice is to turn off third-party cookies.
- Or use an extension that blocks
 - access to third-part cookies,
 - tracking, or
 - JavaScript (noscript).
Thank you for your attention!

Any questions?

Gábor György Gulyás
Privatics Team, INRIA
http://gulyas.info // @GulyasGG